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A recently proposed non-uniform fifth-order thermodynamic perturbation
theory (TPT) is employed to investigate the adsorption of a hard core
attractive Yukawa (HCAY) fluid in a spherical cavity. Extensive compar-
ison with available simulation data indicate that the non-uniform fifth-
order TPT is sufficiently reliable in calculating the density profiles of the
HCAY fluid in the highly confining geometry, and generally is more
accurate than a previous third-orderþ second-order perturbation density
functional theory. The non-uniform fifth-order TPT is free from numer-
ically solving an Ornstein–Zernike integral equation, and also free of any
adjustable parameter; consequently, it can be applied to both supercritical
and subcritical temperature regions. The non-uniform fifth-order TPT is
employed to investigate critical adsorption of the HCYA fluid in a single
spherical cavity – it is disclosed that the critical fluctuations near the critical
point induce depletion adsorption – quantitative theoretical calculation on
relationship between the critical depletion adsorption, parameters of
coexistence bulk phase and the responsible external field is in agreement
with qualitative physical analysis.

Keywords: liquids; adsorption; thermodynamic perturbation theory

1. Introduction

Adsorption is a very important chemical engineering operational unit, which plays
key roles in many phenomena, such as catalysis, separation, crystallisation from
solution and phase transitions in confining geometries, such as capillary condensa-
tion, layering and wetting transitions of fluids in pores [1]. In recent years, theoretical
description of adsorption phenomena is largely based on a so-called non-local
density functional theory (NDFT) [1] whose significant improvement over a
local density functional theory (LDFT) [1] lies in that the NDFT can satisfactorily
describe the structure of simple confined fluids, namely an oscillatory density profile
near solid surfaces or of fluids in confining geometries, such as slits, cylinders and
spheres. From the point of view of a theoretical formalism, all of the published
NDFTs can be categorised into different types according to their treatment ways for
an attractive part of the underlying interaction potential. In the NDFTs reported in
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Ref. [2], the attractive part is treated on the level of a van der Waals theory for the
simple bulk fluids, the uniform limit of the NDFT [2] is exactly equivalent to the van
der Waals treatment on the attractive part of the potentials. For these NDFT
approaches, the only input is a hard sphere density functional approximation (DFA),
which is employed to treat the hard sphere repulsion part of the potential. Several
existing hard sphere DFAs can serve well for the aim: weighted density approxi-
mation (WDA) due to Tarazona [3a], and Curtin and Ashcroft [3b], a well-known
variant of the WDA, i.e. fundamental measure functional (FMF) due to Rosenfeld
[4a] and Kierlik and Rosinberg [4b], a Lagrangian theorem-based density functional
approximation (LTDFA) [5a] and its adjustable parameter free version [5b] and
finally a so-called bridge DFA [6]. Since there is no need for a bulk second-order
direct correlation function (DCF) as input, the NDFT reported in Ref. [2] can
conveniently treat the subcritical adsorption phenomena [1,2,7], such as capillary
condensation and wetting transitions of fluids in pores and depict the phase diagram
of fluids in confining conditions. The drawback of this kind of NDFT [2] is that the
prediction accuracy for the density profile is unsatisfactory, which arises from an
oversimplified treatment on the attractive part of the potential. In the NDFTs [8],
both the attractive part and the hard sphere repulsion part are treated on the same
level by the WDAs, and the weighting function is obtained by solving an integral-
differentiation equation involving the bulk second-order DCF over a density range.
Therefore, the numerical implementation of this kind of NDFT [8] needs the bulk
second-order DCF over a density range as input, this makes this kind of NDFT [8]
unable to treat the subcritical adsorption phenomena of the van der Waals fluids. In
the NDFT reported in Ref. [9], the bulk second-order DCF is divided into a hard
core part and a tail part, it is thought that the tail part can be sufficiently treated on
the level of the second-order perturbation expansion, whereas the hard core part has
to be treated by higher order perturbation expansion approximations or by other
efficient hard sphere DFAs. This kind of NDFT [9a,10,11] only requires the second-
order DCF of the coexistence bulk fluid as input, therefore it can be used to
investigate the subcritical adsorption phenomena. In fact, this kind of NDFT [10] is
presently the most accurate density functional theory (DFT) version for the van der
Waals fluids. The only drawback of the NDFT [10] is that one has to determine an
associated physical parameter beforehand. In the NDFT, reported in Ref. [12], the
hard core repulsion and the attractive tail are treated separately by different WDAs.
The NDFTs by Sweatman [13a], and by Kim and Lee [13b] employ the bulk seco nd-
order DCF as input from numerical solution of the Ornstein–Zernike (OZ) integral
equation theory (IET) for calculation of weighting function needed to calculate the
involved weighted densities, their application to subcritical adsorption is either
involved with very complicated mathematical process [13a] or is impossible at all
[13a, b]. Obviously an NDFT, which is free of the numerical bulk seco nd-order DCF
and any adjustable physical parameter, but can be applied with satisfactory accuracy
to both the supercritical and subcritical regions, is very desirable. It is noted that a
recent literature [14d] achieves this goal, the formalism in Ref. [14d] is based on
a recently proposed fifth-order thermodynamic perturbation theory (TPT) [14d],
which is actually a higher order version of a recently proposed coupling parameter
expansion TPT [14a–c], but the fifth-order TPT [14d] is extended in Ref. [14d] from
bulk to non-uniform situation in the framework of classical DFT. The aim of this
study is twofold. Firstly, the recent non-uniform fifth-order TPT [14d] is tested in a
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harsh situation, i.e. adsorption of a hard core attractive Yukawa (HCAY) fluid in
a single spherical cavity; secondly, we employ the non-uniform fifth-order TPT to
investigate influence of the critical fluctuations on the adsorption of the HCAY fluid
in the single spherical cavity.

Organisation of this article is as follows. In Section 2, the formalism of the non-
uniform fifth-order TPT [14d] is briefly recounted and is applied to the HCAY fluid
confined in a single spherical cavity, the resultant theoretical calculations for the
density profiles are compared with the corresponding simulation data available in
literature; it also will be shown that the non-uniform fifth-order TPT can predict very
accurately a radial distribution function (rdf) of the bulk HCAY fluid. In Section 3,
we apply the non-uniform fifth-order TPT [14d] to the near critical and supercritical
adsorption of the HCAY fluid in a single spherical cavity and explore the influence
of the critical fluctuations on the adsorption behaviour. Finally, in Section 4, this
research is concluded.

2. Non-uniform fifth-order TPT

In the non-uniform fifth-order TPT [14d], bulk excess Helmholtz free energy Fex(�b)
for a system of N particles in a volume V interacting via a full pair potential u(r) is
employed as input to construct the corresponding non-uniform Fex[�(r)] to be used in
the framework of the classical DFT. Fex(�b) is calculated by a recently proposed TPT
based on the coupling parameter expansion; when the series is truncated at n¼ 3, the
resultant third-order TPT [14a–c] is shown to be a large improvement over a
traditional second-order macroscopic compressibility approximation (MCA) [16]
TPT; while, when the series is truncated at n¼ 5, the resultant fifth-order TPT [14d]
is also shown to be an improvement over the third-order TPT [14a–c]. In this article,
the fifth-order version of the coupling parameter expansion TPT will be employed;
detail of relevant numerical implementation can be referred to [14].

In the classical DFT, the equilibrium density profile �(r) is calculated by an
Euler–Lagrange equation resulting from minimisation of an approximate grand
potential functional

�ðrÞ ¼ �b expf��’extðrÞ þ Cð1Þðr; ½��Þ � C
ð1Þ
0 ð�bÞg, ð1Þ

where C(1)(r; [�]) is the first-order DCF of the non-uniform fluid, C
ð1Þ
0 ð�bÞ the

uniform first-order DCF of the corresponding coexistence bulk fluid of density �b.
C(1)(r; [�]) is mathematically first-order functional derivative of Fex[�(r)] with

respect to �(r)

Cð1Þðr; ½��Þ ¼
���Fex½��

��ðrÞ
: ð2Þ

In Refs. [9,10] C(1)(r;[�]) and Fex[�(r)] are divided into hard core part and tail part

Fex½�ðrÞ� ¼ Fex�hc½�ðrÞ� þ Fex�tail½�ðrÞ� ð3Þ

Cð1Þðr; ½��Þ ¼ C
ð1Þ
hc ðr; ½��Þ þ C

ð1Þ
tailðr; ½��Þ; ð4Þ

correspondingly, one has:

Fexð�bÞ ¼ Fex�hcð�bÞ þ Fex�tailð�bÞ ð5Þ

812 Y. Peng et al.
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C
ð1Þ
0 ð�bÞ ¼ C

ð1Þ
0�hcð�bÞ þ C

ð1Þ
0�tailð�bÞ ð6Þ

and consequently

Cð1Þðr; ½��Þ � C
ð1Þ
0 ð�bÞ ¼ ½C

ð1Þ
hc ðr; ½��Þ � C

ð1Þ
0�hcð�bÞ� þ C

ð1Þ
tailðr; ½��Þ � C

ð1Þ
0�tailð�bÞ

h i
: ð7Þ

Considering that Fex(�b) from the fifth-order TPT is employed in Ref. [14d] as
input, one can assume self-consistently Fex�hc(�b)¼Fex�ref(�b). As for the treatment
for Fex�hc[�(r)], the non-uniform fifth-order TPT employs the LTDFA [5], therefore,
one has

C
ð1Þ
hc ðr; ½��Þ � C

ð1Þ
0�hcð�bÞ ¼

Z
dr1ð�ðr1Þ � �bÞC

ð2Þ
0�hs�PY r� r1j j; ~�hcððrþ r1Þ=2, �Þð Þ, ð8Þ

where the hard core weighted density ~�hc is given by

~�hcððrþ r1Þ=2,�Þ ¼

Z
dr0C

ð2Þ
0�hs�PY ðrþ r1Þ=2� r0

�� ��;�b� �
�bþ�ð�ðr

0Þ��bÞ½ �=C 1ð Þ0
0�hs�PYð�bÞ:

ð9Þ

In Equations (8) and (9), C
ðnÞ
0�hs�PY is a bulk hard sphere fluid nth-order DCF,

C
ð1Þ0
0�hsð�bÞ stands for first-order derivative of the bulk hard sphere fluid first-order

DCF with respect to the density argument �b. The subscript PY means that the
C
ðnÞ
0�hs�PY and C

ð1Þ0
0�hs�PYð�bÞ are obtained under Percus–Yevick approximation [17] for

the OZ IET. Regarding the numerical value of the parameter �, we will discuss it
later in this study.

As for C
ð1Þ
tailðr; ½��Þ, Ref. [14a, d and h] propose using the following approximation

[1] for Fex�tail½�ðrÞ�:

Fex�tail½�ðrÞ� ¼

Z
dr�ðrÞ fex�tailð ~�tailðrÞÞ ð10Þ

where fex�tail is the bulk excess Helmholtz free energy per particle for the tail part.
Considering that one has assumed Fex�hc(�b)¼Fex�ref(�b), therefore, we have [14d]

fex�tailð�bÞ ¼ Fex�tailð�bÞ=N ¼ ðFexð�bÞ � Fex�refð�bÞÞ=N: ð11Þ

The weighted density ~�tailðrÞ is calculated by a simple WDA [18],

~�tailðrÞ ¼

Z
�ðr 0Þwðjr� r 0j; �bÞ ð12Þ

wðr; �bÞ ¼ C
ð2Þ
0�tailðr; �bÞ

.Z
drC

ð2Þ
0�tailðr; �bÞ: ð13Þ

C
ð2Þ
0�tailðr; �bÞ is a tail part of the bulk second-order DCF C

ð2Þ
0 ðr; �bÞ for the full pair

potential u(r). In parallel with Equation (2), one has

C
ð1Þ
tailðr; ½��Þ ¼

���Fex�tail½��

��ðrÞ

¼ ��fex�tailð ~�tailðrÞÞ �

Z
dr 0�ðr 0Þ� f 0ex�tailð ~�tailðr

0ÞÞwðjr� r 0j; �bÞ: ð14Þ
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After taking the limit of �ðrÞ ! �b on C
ð1Þ
tailðr; ½��Þ, one obtains C

ð1Þ
0�tailð�bÞ. The

above derivation directly leads to a numerically tractable density profile equation,

�ðrÞ ¼ �b exp ��’extðrÞþ
� Z

dr1ð�ðr1Þ � �bÞC
ð2Þ
0 ðjr� r1j; ~�hcððrþ r1Þ=2, �ÞÞ

� �fex�tailð ~�tailðrÞÞ �

Z
dr 0�ðr 0Þ� f 0ex�tailð ~�tailðr

0ÞÞwðjr� r 0j; �bÞ

þ�fex�tailð�bÞ þ ��b f
0
ex�tailð�bÞ

�
: ð15Þ

In Ref. [14d], three principles are proposed for guiding in choosing approxima-

tion for C
ð2Þ
0�tailðr; �bÞ, the resultant approximation for C

ð2Þ
0�tailðr; �bÞ is given

C
ð2Þ
0�tailðr; �bÞ ¼ ð�p � 1ÞC

ð2Þ
0�hs�PYðr; �bÞ r5 �

expð��uðrÞÞ � 1 r � �:
ð16Þ

Here,

�p ¼ � � � 1
1 �4 1:

ð17Þ

As for specification of the parameter �, one can determine it by thermodynamic

self-consistency condition given by

1� �b

Z
drC

ð2Þ
0 ðr; �bÞ ¼ 1=�T ¼ ð@�P=@�bÞT, ð18Þ

where ð@�P=@�bÞT can be calculated by the employed uniform fifth-order TPT.
When we employ the adjustable parameter free version [5b] of the hard sphere

LTDFA [5a] for use as the approximation of the hard core part, i.e. the physical

parameter; � in Equations (8, 9) is set to be 0.5, the resultant predictions for the

density profile of the HCAY fluid as simulated in Ref. [19] deviate sometimes largely

from the simulation results. Considering that the hard sphere LTDFA [5a] holds a

self-correction efficacy [20], which can make good the likely un-appropriateness of

an approximate bulk second-order DCF as input, and ensure the final theoretical

results are still satisfactory, we suggest to use the LTDFA [5a] instead of its

adjustable parameter free version [5b]. Then, how to specify the physical parameter �
constitutes a new problem. Determination of the � by the so-called hard wall sum

rule [21] is certainly a way; however, this way will incur inconvenience in application

as one has to determine beforehand the value of � for every coexistence bulk

condition. Unlike the case in Ref. [20], where the numerical value of � changes

drastically when the bulk coexistence conditions change, for the present case, �
remains near a fixed value, the value is about 0.45. The fortunate phenomenon has

its physical origin, which will be explained as follows. Unlike the case in Ref. [20],

where the reliability of the bulk second-order DCF for the polymer from solving

numerically a polymer-RISM integral equation varies obviously as the bulk

parameters change, therefore the dependence on self-correction efficacy of the

LTDFA [5a] also changes drastically, this leads to a very dispersing numerical value

of �. In this case, the performance of the ansatz bulk second-order DCF is stable due

to the imposition of the thermodynamic self-consistency condition, the shifting of �
value from the original 0.5 to the present 0.45 only helps to offset the systematical
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error incurred by the ansatzs for the bulk second-order DCF. This explanation is

furthermore evidenced by the observation disclosed in Ref. [22], where it is shown

that � still remains at 0.5 when the polymer-reference interaction site model (RISM)

bulk second-order DCF is scaled by a coefficient, which is determined by the

polymer equation of state combined with the isothermal compressibility equation. By

adjusting the present � value to a fixed value of 0.45, the present inaccuracy for the

density profile is largely lowered. From this observation, one can draw two remarks.

One is that the error originating from the ansatzs for the bulk second-order DCF is

systematical, therefore a constant lowering of � value, which can lead to a whole

shifting of the density profile as shown by �bþ �(�(r)��b) in Equation (13), repair

well the approximation of the ansatzs; the other is that the validity of �¼ 0.45 fully

demonstrates the self-correction efficacy of the LTDFA [5a] as explained in detail in

Ref. [20]. Throughout the study, the value of � is fixed at 0.45.
We will test the accuracy of the non-uniform fifth-order TPT for calculating the

density distribution of the HCAY fluid being subjected to an external potential due

to a highly confining geometry, i.e. a spherical cavity and maintaining equilibrium

with the bulk fluid, when the latter is in the state of (1) supercritical temperature

but close to the critical value with the density ranging from low to high density

region and (2) subcritical temperature with the density near the liquid–vapour

coexistence line.
The external potential due to a hard spherical cavity is given by

�extðrÞ ¼ 0 rj j5R

¼/ rj j4R:
ð19Þ

When the external field is due to a bulk HCAY particle situated at the origin, the

external potential is given by

’extðrÞ ¼ uHCAYðrÞ, ð20Þ

where uHCAY(r) is the interaction potential between two HCAY particles separated

by an interval r,

uHCAYðrÞ ¼/ r=�5 1

¼ �"� exp �	� r� �ð Þ=�½ �=r r=�4 1, ð21Þ

where " is an interaction strength and 	* a reduced potential range parameter.

For the case of the external potential Equation (20), the reduced density distribution

function �(r)/�b is actually the bulk rdf g(r) according to the Percus’ test particle

method [23].
The computer simulation bulk phase behaviour of the HCAY fluid is given in

Ref. [24], this helps the choice of the coexistence bulk fluid parameters in this article

and in Ref. [19]. The present theoretical predictions for the density profiles are

presented in Figures (1–4) together with the corresponding simulation results

available in Ref. [19]. Throughout the text, a reduced temperature is defined as

T*¼ kT/" with k being Boltzmann constant and T absolute temperature.
Now, we will give a detailed comparison of the present Figures (1–4) with

figures (16–19) in Ref. [19], where the theoretical predictions are based on a

third-orderþ second-order perturbation DFT [9a,19]. We have not presented the
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third-orderþ second-order perturbation DFT predictions in Figures (1–4) only to
make the figures clear enough since each one of the Figures (1–4) presents several
curves corresponding to different coexistence bulk densities.

A comparison between the present Figures (1–4) and the Figures (16–19) of Ref.
[19] discloses that the third-orderþ second-order perturbation DFT is a little more
accurate than the non-uniform fifth-order TPT–ZDL–PTS for the parameter
combination of 	� ¼ 1:8 and T*¼ 1.25 except for the cases of the two highest
coexistence bulk densities where the present approach is more accurate than the
third-orderþ second-order perturbation DFT. For the parameter combinations of
	� ¼ 3:0,T� ¼ 0:76 and 	� ¼ 4:0,T� ¼ 0:61, the present approach is obviously more
accurate than the third-orderþ second-order perturbation DFT, but both the

0.05

0.10

0.15

0.20(a)

(b)

ρbσ3=0.40136

ρbσ3=0.30062

ρbσ3=0.20132

ρbσ3=0.10051

T*=1.25,κ*=1.8

ρ(
r)

σ3

r/σ

ρ(
r)

σ3

r/σ

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.0
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1.5

2.0

ρbσ3=0.60308

ρbσ3=0.70013

ρbσ3=0.80183

ρbσ3=0.50096

T*=1.25,κ*=1.8

Figure 1. The present theoretical (lines) and simulation (symbols) results for the density
profiles of the HCAY fluid in a spherical cavity of radius R¼ 4.5� at supercritical
temperature for the chosen potential range parameter. Notes: The coexistence of bulk densities
and potential range parameter chosen are shown in the figure; the simulation results are
reproduced from [19].
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approaches become more inaccurate when the coexistence bulk densities increase.
For the subcritical temperature cases, the present approach performs better than the
third-orderþ second-order perturbation DFT.

For the external field due to a HCAY particle denoted by Equations (20) and
(21), the two approaches behave well for the calculation of the rdf g(r). However, it is
still easy to observe the higher accuracy of the present approach than that of the
third-orderþ second-order perturbation DFT; for reason of page limit, the results
are not presented.

To conclude, the non-uniform fifth-order TPT is generally more accurate than
the third-orderþ second-order perturbation DFT. Concretely speaking, as the
potential range becomes shorter, the present approach becomes more and more
accurate than the third-orderþ second-order perturbation DFT. For a combination
of the long potential range such as 	� ¼ 1:8 and a single hard wall external field as

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.1

0.2

0.3

0.4(a)

(b)
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ρbσ3=0.80086

ρbσ3=0.70070

ρbσ3=0.60082ρbσ3=0.49994

T*=0.76,κ*=3
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Figure 2. Same as Figure 1 but for the coexistence of bulk densities, potential range parameter
and temperature as shown in the figure.
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investigated in Refs. [9a, 19], extensive calculation and comparison indicate (due to
page limit, the corresponding comparison is not presented) that on average the third-
orderþ second-order perturbation DFT is not too inferior to the non-uniform fifth-
order TPT, but for other external fields, the third-orderþ second-order perturbation
DFT deteriorates drastically even the potential range is still fixed at 	� ¼ 1:8. As the
satisfactory performance of the third-orderþ second-order perturbation DFT for the
parameter combination of 	� ¼ 1:8 and the single hard wall cannot go on for other
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–0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
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1.3

,ρbσ3=0.79678

ρ(
r)

σ3

r/σ
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

T*=0.54,κ*=4

,ρbσ3=0.69972T*=0.7,κ*=3

,ρbσ3=0.70063T*=1.1,κ*=1.8

Figure 4. The present theoretical (lines) and simulation (symbols) results for the density
profiles of the HCAY fluid in a spherical cavity of radius R¼ 4.5� at subcritical temperature
for each potential range parameter value chosen. Notes: The coexistence of bulk densities is
at monophasic liquid state. The simulation results are reproduced from [19].

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ρbσ3=0.50684

ρbσ3=0.60095
ρbσ3=0.70162

ρbσ3=0.79984

r/σ

ρ(
r)

σ3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

T*=0.61,κ*=4

Figure 3. Same as Figure 1 but for the coexistence of bulk densities, potential range parameter
and temperature as shown in the figure.
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external fields, one has reason to conclude that the satisfactory performance for this
particular case originates from the adjustable parameter in the third-orderþ second-

order perturbation DFT. In fact, succedent literatures [25] had indicated that the
third-orderþ second-order formalism is physically reliable, it is the poor accuracy of

the mean spherical approximation (MSA) bulk second-order DCF employed in Refs.
[9a,19] that leads to unsatisfactory prediction accuracy for these harsh near critical
phenomena. This observation only brings out the superiority of the present ansatzs

bulk second-order DCF to the MSA bulk second-order DCF. The ansatzs bulk
second-order DCF is free from solving numerically the OZ integral equation, and
therefore, its application is not limited to several simple model potentials for which

analytical bulk second-order DCFs are available in literature. Obviously, the
satisfactory performance of the present bulk second-order DCF comes from

the imposition of the thermodynamic self-consistency and a satisfactory accuracy of
the employed uniform fifth-order TPT. It should be pointed out that the sample
coexistence bulk states are near the critical point or near the gas–liquid coexistence

lines, therefore the present test is harsh. Absence of any adjustable parameter from
the present formalism makes the approach very convenient for application
investigation and eligible for theoretical investigation, which needs intensive

calculations.
It is interesting to compare the present non-uniform fifth-order TPT with an

existing density functional approach by Tang and Wu (TW) [26]. In the TW
approach, the hard core part is treated by the FMF [4a], the tail part is treated by the

second-order functional perturbation expansion approximation. The key input, i.e.
the tail part C

ð2Þ
0�tailðr; �bÞ of the bulk second-order DCF C

ð2Þ
0 ðr; �bÞ, is simply equal to

the C
ð2Þ
0 ðr; �bÞ for r� d (d is being the effective hard sphere diameter), and zero for

r5 d. As for C
ð2Þ
0 ðr; �bÞ itself, they obtain it by mapping the considered

Lennard–Jones (LJ) potential onto a two Yukawa potential, which is solved

analytically under the first-order MSA for the OZ integral equation. Obviously, the
accuracy of TW approach depends on both the rationality of the mapping procedure
and the reliability of the first-order MSA. Particularly, when the considered

interaction potentials are wanting in an analytical first-order MSA solution, one has
to numerically solve the OZ integral equation. On the other hand, the present

formalism is free from any analytical or numerical solution of the OZ IET, it also
does not involve any mapping procedure. Therefore, one can expect that the present
formalism is applicable to a wide range of the potential functions.

3. Critical adsorption in spherical cavity

To investigate the critical adsorption of the HCAY fluid, we will use the spherical

cavity as the sample of external field since the spherical cavity exerts the strongest
confinement on the fluid particles among all of the usually investigated external
fields. To describe quantitatively the adsorption, first we define the reduced excess

adsorption ��ex,

��ex ¼ �
2

Z R

0

½�ðrÞ � �b�dr=ð4
R
2Þ: ð22Þ
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The sample external field is given by

’extðrÞ ¼/ rj j4R

¼ "ext exp½	
�
extðr� RÞ� rj j5R: ð23Þ

In Figures (5–12), ��ex of the HCAY fluid in the spherical cavity is presented for

various coexistence bulk phase and external field parameter combinations, the

chosen potential range parameter 	� is, respectively, 1.8, 3 and 4. For these values of

	�, the reduced critical temperature and critical density calculated by the uniform

fifth-order TPT are, respectively, 1.235 and 0.31, 0.74 and 0.39, and 0.59 and 0.3954.
Figures (5–12) clearly show that when the coexistence bulk states are near the

critical point, ��ex reaches a minimum, particularly ��ex is a large negative value. We

call the maximum negative value of ��ex as ‘critical depletion adsorption’. To explain

physically the critical depletion adsorption and its relationship with the external field

parameters and bulk parameters, we propose that the depletion or its counterpart,

i.e. ‘accumulation’ in a confining geometrical body depends on three factors. Hard

core repulsion induces accumulation of the fluid particles adjacent to the hard solid

surface since the fluid particle can avoid the repulsion interaction, which can be

experienced to the full extent in the bulk phase when they move adjacent to the solid

surface. On the contrary, the attractive tail of the underlying potential can induce

depletion of the fluid particles away from the hard solid surface since the fluid

particle can enjoy the attractive interaction to the full extent in the bulk phase.

Obviously, the accumulation adjacent to the solid surface can be strengthened by a

high density, but the depletion away from the solid surface can be strengthened by a

low density due to the fact that when the bulk density is high enough the repulsion

0.0 0.2 0.4 0.6 0.8
–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2
βεext =0.0, R=2.5σ

Γ e
x*

ρbσ3

T*=1.25κ*=1.8,

T*=0.76κ*=3,

T*=0.61κ*=4,

Figure 5. The excess adsorption ��ex as a function of reduced density �b�
3 for the HCAY fluid

confined in a hard spherical cavity of radius R¼ 2.5�. Notes: Reduced temperatures of the
coexistence bulk phases are, respectively, very near respective critical reduced temperatures.
The potential range parameters are, respectively, long-ranged (	� ¼ 1:8) and intermediate-
ranged (	� ¼ 3 and 	� ¼ 4).
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interaction in the bulk phase will play more and more important role, which makes
the bulk environment unfavourable and the surface environment favourable.
However, the high density-restraining depletion effect occurs only when the density
is high enough. When the density is not high enough, an increasing density
strengthens the depletion adsorption instead of restraining the depletion adsorption
since more particles confined within a small space is an energetically unfavourable
configuration. For the attractive tail-induced depletion, the influencing factors
additionally include the critical fluctuation effect. Around the critical point, the
correlation length unusually increases, when the geometrical size is smaller than
the correlation length, the fluid particles will move out of the cavity to be situated in
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–0.6

–0.5

–0.4
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βεext =0.0
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x
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ρbσ3

0.0 0.2 0.4 0.6 0.8

0.0 0.2 0.4 0.6 0.8
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eσ

3

ρ*

T*=1.25,κ*=1.8,

βεext =0.0T*=1.25,κ*=1.8,

Figure 6. (a) The excess adsorption ��ex as a function of reduced density �b�
3 for the HCAY

fluid (	� ¼ 1:8 and T*¼ 1.25) confined in a hard spherical cavity of radius R¼ 2.5�, 3.5�,
4.5�, respectively; (b) The same as in figure a except that ��ex is substituted by the reduced
excess average density �ex�ave�

3.
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the bulk to enjoy to the full extent the attraction interaction to lower the system
energy. Therefore, the critical fluctuation effect will strengthen the depletion
adsorption phenomena. Obviously, the critical depletion phenomena will be
strengthened by a highly confining geometry. For case of the spherical cavity, a
smaller radius will strengthen the critical depletion adsorption than a larger radius
does. In addition, it is obvious that an attractive surface will strengthen the
accumulation and a repulsive surface will strengthen the depletion, one can easily
explain this conclusion from the point of view of energy.
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R=3.5σ, κext
*=1.0

Γ* ex
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0.0 0.2 0.4 0.6 0.8

T*=1.25,κ*=1.8,

Figure 7. The excess adsorption ��ex as a function of reduced density �b�
3 for the HCAY fluid

(	� ¼ 1:8 and T*¼ 1.25) confined in an attractive spherical cavity of radius R¼ 3.5�.
The external potential parameters are shown in the figure.
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Figure 8. Same as in Figure 7 but the external potential is repulsive.
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With the above mechanism, one can explain the calculated results in

Figures (5–12). Figure 5 surely displays the critical depletion adsorption around

the critical region, but how to explain why the minimum ��ex occurs at a coexistence

bulk density larger than the respective critical density? It is well known that

the critical density is intermediate, as explained earlier, at the intermediate density

region and that the critical depletion adsorption can be strengthened by an increase

of the density.
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Figure 9. Influence of temperature on the ��ex � �b�
3 curve for the hard spherical cavity of

radius R¼ 2.5�, the potential range parameter 	� ¼ 3.
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Figure 10. Influence of temperature on the ��ex � �b�
3 curve for the attractive spherical cavity

of radius R¼ 2.5�, the potential range parameter 	� ¼ 3 and the external potential parameters
are shown in the figure.
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Figure 6(a) describes the influence of the geometrical size on the depletion
adsorption. According to the above mechanism, the smallest geometrical size
R¼ 2.5� should correspond to the strongest depletion, but the calculated results in
Figure 6(a) seem to contradict the qualitative analysis since Figure 6(a) shows that
R¼ 2.5� corresponds to the smallest depletion. Considering that the value of ��ex also
depends on the surface area per volume, therefore ��ex is not an appropriate quantity
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Figure 11. Influence of temperature on the ��ex � �b�
3 curve for the repulsive spherical cavity

of radius R¼ 2.5�, the potential range parameter 	� ¼ 3 and the external potential parameters
are shown in the figure.
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Figure 12. Influence of external potential range parameter 	�ext on the ��ex � �b�
3 curve for an

attractive spherical cavity of radius R¼ 2.5�. Note: The potential range parameter 	� ¼ 3, and
the temperature is fixed at T*¼ 0.76.
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for describing singly the depletion effect for which the appropriate quantity should
be the excess average density �ex�ave in the spherical cavity given by

�ex�ave ¼

Z R

0

½�ðrÞ � �b�dr=ð4
R
3=3Þ: ð24Þ

In Figure 6(b) �ex�ave as a function of the coexistence bulk density is presented
for the same parameter set as in Figure 6(a), one clearly observes that the curve for
R¼ 2.5� moves to the lowest position in agreement with the above qualitative
analysis. Correspondingly, the curves for R¼ 3.5�, 4.5� move up to higher positions
in sequence. How to explain the observation that the coexistence bulk density
corresponding to the minimum �ex�ave�

3 increases when the geometrical size R
decreases? As the geometrical size R decreases, the critical depletion is strengthened
according to the above mechanism, thus a higher coexistence bulk density is required
to restrain the depletion adsorption.

Figures 7 and 8, respectively, describe the influences of the attractive and
repulsive external fields on the critical depletion phenomena. Obviously, the
attractive external field offsets the critical fluctuation effect and therefore raises
��ex. On the contrary, the repulsive external field strengthens the critical fluctuation
effect and therefore lowers ��ex. The larger the attractive external field or the repulsive
external field strength is, the more significant the offsetting or strengthening is. The
influences of temperature on the critical depletion phenomena for neutral, attractive
and repulsive external fields are respectively described in Figures (9–11), which shows
that the more away from the critical temperature, the more significant the depletion
phenomena is restrained. From Figures (7–11), one general phenomena can be
found, which indicates that the coexistence bulk densities corresponding to the
largest depletion adsorption (i.e. the smallest ��ex or �ex�ave�

3) move to a higher value
as the depletion phenomena is strengthened. This can be explained by the same
mechanism, which explains the Figure 6(b).

Influence of the range parameter 	�ext of the attractive external field on the
��ex � �b�

3 curve is presented in Figure 12 for the parameter combinations as shown
in the figure. It is shown that as the range parameter 	�ext increases, the external field
becomes less attractive, consequently the ��ex � �b�

3 curve moves to a lower position
in the figure. What remains to be explained in detail is why the coexistence bulk
density corresponding to the minimum ��ex moves to a smaller value as the depletion
adsorption is strengthened by a high 	�ext, since this observation contradicts with the
above analysis. We will explain this ‘unusual phenomena’ as follows. Obviously, the
depletion adsorption can occur more easily for a high 	�ext value than for a low 	�ext
value. Thus, for the high 	�ext case, it is not the most effective route to resort to the
intermediate density-strengthening depletion mechanism to increase the depletion,
since this mechanism will also incur counter-depletion effect as it will lead to a large
deviation from the critical point. It is the interaction between the two counter effects,
which leads to a faster arrival at the minimum ��ex point for the high 	

�
ext case than for

the low 	�ext case.

4. Conclusions

This article reports that the accuracy of the non-uniform fifth-order TPT [14d] for
the density profiles of the HCAY fluid confined in a spherical cavity is generally
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higher than the third-orderþ second-order perturbation DFT [9a]. Considering that
the non-uniform fifth-order TPT is based on several ansatzs for the bulk second-
order DCF, its reliability for other model potentials, particularly for those effective
interaction potentials, which are of complicated mathematical forms, is worth
further separate investigations. Extensive investigation about the adsorption in
critical region is carried out, we find the interesting critical depletion adsorption
phenomena whose physical explanation is in agreement with the theoretically
calculated results. The critical depletion adsorption will influence the effective
potential [27] between the colloidal particles, and certainly will also influence the
phase behaviour [28] of complex fluids. All of these problems will be investigated
in future research.
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